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Abstract A genetic linkage map of tetraploid wheat was
constructed based on a cross between durum wheat [Triti-
cum turgidum ssp. durum (Desf.) MacKey] cultivar Lang-
don and wild emmer wheat [T. turgidum ssp. dicoccoides
(Körn.) Thell.] accession G18-16. One hundred and Wfty-
two single-seed descent derived F6 recombinant inbred
lines (RILs) were analyzed with a total of 690 loci, includ-
ing 197 microsatellite and 493 DArT markers. Linkage
analysis deWned 14 linkage groups. Most markers were
mapped to the B-genome (60%), with an average of 57
markers per chromosome and the remaining 40% mapped
to the A-genome, with an average of 39 markers per chro-
mosome. To construct a stabilized (skeleton) map, markers
interfering with map stability were removed. The skeleton
map consisted of 307 markers with a total length of
2,317 cM and average distance of 7.5 cM between adjacent
markers. The length of individual chromosomes ranged

between 112 cM for chromosome 4B to 217 cM for chro-
mosome 3B. A fraction (30.1%) of the markers deviated
signiWcantly from the expected Mendelian ratios; clusters
of loci showing distorted segregation were found on chro-
mosomes 1A, 1BL, 2BS, 3B, and 4B. DArT markers
showed high proportion of clustering, which may be indica-
tive of gene-rich regions. Three hundred and Wfty-two new
DArT markers were mapped for the Wrst time on the current
map. This map provides a useful groundwork for further
genetic analyses of important quantitative traits, positional
cloning, and marker-assisted selection, as well as for
genome comparative genomics and genome organization
studies in wheat and other cereals.

Introduction

Wheat (Triticum spp.) is one of the most widely grown
food grain crops in the world, providing about one-Wfth of
the calories consumed by humans (FAOstat 2007). Con-
struction of a genetic map with molecular markers is a key
step in convenient linkage analysis of biologically or agro-
nomically important traits. Genetic linkage maps are a fun-
damental tool for several purposes, such as evolutionary
genomics, understanding the biological basis of complex
traits, dissection of genetic determinants underlying the
expression of agronomically important traits and, Wnally,
facilitating marker-assisted selection (MAS) and map-
based cloning.

Wheat genetic maps were Wrst comprised of restriction
fragment length polymorphisms (RFLPs) and later on PCR-
based markers were adopted, including random ampliWed
polymorphic DNA (RAPD) and ampliWed fragment length
polymorphism (AFLP) (Gale et al. 1995; Messmer et al.
1999; Peng et al. 2000; Paillard et al. 2003; Blanco et al.
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1998). Recently, simple sequence repeats (SSRs, also
known as microsatellites) have become the markers of
choice for cereal genetic analysis and mapping (Varshney
et al. 2007). To date, over 2,000 SSR markers on 21 hexa-
ploid wheat chromosomes have been published (see Ganal
and Röder 2007). Molecular marker technologies, however,
are currently undergoing a transition from largely serial
technologies based on separating DNA fragments accord-
ing to their size (e.g., SSR, AFLP) to highly parallel,
hybridization-based technologies that can simultaneously
assay hundreds to tens of thousands of markers.

Diversity arrays technology (DArT) was developed as a
hybridization-based alternative which captures the values
of the parallel nature of the microarray platform (Jaccoud
et al. 2001). DArT simultaneously types several thousands
of loci in a single assay. DArT generates whole-genome
Wngerprints by scoring the presence versus absence of DNA
fragments in samples of genomic DNA. DArT has recently
been used in genetic mapping and Wngerprinting studies in
cereals such as rice (Jaccoud et al. 2001), barley (Wenzl
et al. 2004), and wheat (Akbari et al. 2006; Semagn et al.
2006).

Wild emmer wheat [Triticum turgidum ssp. dicoccoides
(Körn.) Thell.] is an allo-tetraploid species comprised of
two sub-genomes (A and B) with 2n = 4£ = 28 chromo-
somes. It is the progenitor of tetraploid (genome BBAA)
durum wheat [T. turgidum ssp. durum (Desf.) MacKey] and
hexaploid (2n = 6£ = 42; genome BBAADD) bread wheat
(T. aestivum L.) (Feldman 2001). Wild emmer thrives
across wide ecological conditions throughout the Near East
Fertile Crescent (Harlan and Zohary 1966). Hence, it may
oVer valuable source of allelic repertoire for improvement
of agronomically important traits in cultivated wheat (Nevo
et al. 2002; Peleg et al. 2005). Furthermore, it is estimated
that only 10–20% of the wild alleles have been used in
modern wheat varieties (Langridge et al. 2006).

The objectives of the present study were to (1) construct
a high-density genetic linkage map in a population of
recombinant inbred lines (RILs) obtained from a cross
between durum wheat cultivar and its wild progenitor,
T. dicoccoides, and (2) analyze the distribution of DArT
versus SSR markers throughout the A and B genomes.

Materials and methods

Mapping population and genomic DNA extraction

The mapping population used in this study consisted of 152
F6 recombinant inbreed lines (RILs) derived from a cross
between durum wheat (female) cultivar Langdon (LDN
hereafter) and wild emmer wheat (male) accession G18-16.
The wild emmer wheat accession was sampled from Gitit

(35°24�N, 32°06�E; 288.4 m above sea level) (see Table 1
in Peleg et al. 2005). F1 progeny from the initial cross were
taken through Wve generations of selWng via single seed
decent (SSD) procedure to produce homozygous RILs.

DNA was extracted from fresh leaf tissue (»200 mg) of
2-week-old wheat seedlings of the two parent lines and the
RIL population using DNAzol ES kit (Molecular Research
Center Inc., Cincinnati).

Microsatellite assay

A total of 914 wheat microsatellite (SSR) markers were
used to screen the parental lines for polymorphism. These
markers consisted primarily of Gatersleben Wheat Micro-
satellites (GWM; Röder et al. 1995, 1998; Ganal and Röder
2007) and a few additional markers from Wheat Microsat-
ellite Consortium (WMC; Gupta et al. 2002), Dupont Com-
pany (DuPw; Eujayl et al. 2002), INRA Clermont-Ferrand
(CFA and CFD; Sourdille et al. 2004; Guyomarc’h et al.
2002), Beltsville Agriculture Research Center (BARC;
Song et al. 2005), and Cornell University and Kansas State
University (cnl and ksum; Yu et al. 2004). One hundred
and ninety-six markers showing codominant alternative
alleles between the two parental lines and covering all 14
chromosomes of tetraploid wheat (based on previously
published maps) were used to genotype the 152 RILs.

PCR reactions were carried out in a 25 �l reaction vol-
ume under the following conditions: one denaturation cycle
at 94°C for 5 min followed by 35 cycles of 94°C for 60 s,
50–65°C (depending on the primer) for 60 s, and 72°C for
90 s, followed by an elongation step of 72°C for 7 min.
Fragment analysis was carried out in an automated laser
Xuorescence (A.L.F.) sequencer and analyzed using the
computer program Fragment Analyzer ver. 1.02 (Amer-
sham Biosciences) by comparing with internal size stan-
dards (Röder et al. 1995). The bread wheat cultivar Chinese
Spring and the two parental lines were used as a reference
in each run to ensure size accuracy and to avoid run-to-run
and gel-to-gel variations.

DArT assay

Diversity array technology (DArT) marker assays were per-
formed by Triticarte Pty. Ltd (Canberra, Australia; http://
www.triticarte.com.au) as previously described (Wenzl
et al. 2004; Akbari et al. 2006; Semagn et al. 2006) and
were used to provide additional genomic converge. BrieXy,
a genomic representation of a mixture of 13 cultivars was
produced after PstI–TaqI digestion, spotted on microarray
slides, and the individual genotypes were screened for poly-
morphism based on Xuorescence signals. DNA from the
parents (G18-16 and LDN) was Wrst screened for polymor-
phism and then the individual RILs were genotyped. A total
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of 493 loci were scored as present (1) or absent (0). Names
of loci that were previously mapped by Triticarte Pty. Ltd
include the preWx “wPt” (followed by numbers correspond-
ing to a particular clone); loci that were mapped for the Wrst
time on the current map are presented by clone ID number.

Data analysis and linkage map construction

For each segregating marker, a �2 analysis was performed
to test for deviation from the 1:1 expected segregation ratio.
The genetic map was constructed as described in Mester
et al. (2003a, b, 2004) and Ronin et al. (2008) using the
MultiPoint package (http://www.MultiQTL.com). First, the
pairwise recombination fractions (rf) were calculated for all
pairs of markers using maximum likelihood estimation pro-
cedure. Then, the number of clusters (linkage groups, LG)
was evaluated as a function of the threshold (maximal)
value rf0, allowing for preliminary assignment of a marker
to a certain LG. For example, marker mi may be assigned to
an LGj if recombination between mi and at least one marker
from LGj is lower than the threshold rf0 and is the lowest
compared to its distances to any other LG. The number of
scored markers may considerably exceed the number of
practically resolvable markers by recombination for the
given population size. Thus, only a small portion of mark-
ers (here referred to as delegate markers) can be included in
the skeleton map, with the remainder of markers being
attached to the delegates. Besides non-resolvable linkage
caused by small sample size, the necessity for selection of
representative markers for the skeleton map derives from
non-random (clustered) recombination distribution in the
genome (Korol et al. 1994), varying information content of
markers (missing data, distorted segregation, and scoring
errors), and negative interference (Peng et al. 2000; Esch
and Weber 2002).

The reliability of the obtained multilocus map order was
tested using the jackknife resampling procedure (Mester
et al. 2003b) implemented in MultiPoint software. After
revealing the regions of map instability, marker(s) responsi-
ble for such local instability were removed from the dataset
with the objective of stabilizing the order. At the next step,
we have rebuilt the map and tested again its stability based
on the jackknife resampling in order to arrive at a stabilized
(skeleton) map.

Results

Overview of the genetic linkage map

A total of 690 polymorphic loci were used to assemble the
genetic linkage map, including 197 SSR and 493 DArT
markers. After elimination of 21 unlinked loci, the mapping

of the remaining 669 loci resulted in 14 linkage groups
comprising 24 (5A) to 81 (3B) loci (Table 1). Markers vio-
lating map stability were removed and linkage groups rean-
alyzed to construct a stabilized map (Mester et al. 2003a, b;
Ronin et al. 2008). The resultant skeleton map consisting of
307 markers provided a practical basic map for calculating
recombination frequencies and centiMorgan (cM) dis-
tances. The skeleton map accounted for a total length of
2,317 cM, with an average density of one marker per
7.5 cM (Fig. 1, Table 1). The length of individual chromo-
somes ranged between 112 cM for chromosome 4B and
217 cM for chromosome 3B (Fig. 1; Table 1).

Most of the 493 DArT markers that were polymorphic
between the two parental lines were scored as “present” for
the durum allele (73.4%) with the rest (26.6%) as “present”
for the wild G18-16 allele. Three hundred and Wfty-two
DArT markers were mapped in the current map for the Wrst
time.

Distribution of markers among chromosomes and genomes

The seven homologous groups of the tetraploid wheat
genome varied in the number of markers, map length, and
marker density. Total marker number and density was high-
est in homoeologous group 6 (total 104 loci, 53 skeleton
loci with 6.3 cM per marker), whereas total map length was
the highest (371.7 cM) in group 2. Homoeologous group 7
had the lowest marker number and density (total 78 loci, 36
skeleton loci with 8.9 cM per marker) and group 4 had the
shortest map length (233.5 cM). DiVerences were also
found between the two sub-genomes, with 339 (60%)
markers mapped to the B genome (average 57 markers per
chromosome) and 270 (40%) to the A genome (average of
39 markers per chromosome). The B-genome skeleton map
was denser, with 185 markers that accounted for 1,261 cM
of genetic distance (6.8 cM per marker). The A genome
skeleton map spanned 1,056 cM with 122 markers (8.7 cM
per marker).

Clustering of markers

The genetic markers were distributed non-randomly (P �2

(df 231) · 0.0001) along the chromosomes. Clusters of
markers were observed on most of the chromosomes of the
A and B genomes (Figs. 1, 2). The SSR markers used in the
current study were selected, according to previously pub-
lished maps, to cover all 14 chromosomes, whereas DArT
markers scored in the mapping population were not tar-
geted to speciWc genomic regions. Therefore, clustering of
markers was tested for the two types of markers separately,
revealing signiWcant clusters of DArT markers on most
chromosomes. The clustering phenomenon for the A and B
sub-genomes and for the entire genome was found highly
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signiWcant for the DArT markers. For example, the non-
random distribution pattern of both types of marker inter-
vals on chromosomes 1A [P �2 (df 18) · 0.1 and P �2 (df
18) · 0.0001 for SSRs and DArTs, respectively], 2A [P �2

(df 18) · 0.0001 and P �2 (df 18) · 0.0001 for SSRs and
DArTs, respectively], and 6B [P �2 (df 16) · 0.001 and P
�2 (df 16) · 0.0001 for SSRs and DArTs, respectively] is
shown in Fig. 2.

Segregation distortion of markers

A signiWcant segregation distortion was found in 208 (30%)
out of 669 markers analyzed on 152 RILs. One hundred and
twenty-one markers (17.5%) showed distortion in favor of
the wild emmer wheat allele whereas 87 (12.6%) showed
distortion in favor of the durum wheat allele (at P · 0.05;
data not shown). Out of the 307 skeleton markers that were
used to construct the skeleton map, 91 (29.6%) showed sig-
niWcant distorted segregation with 38 markers (12.4%)
showing distortion in favor of the LDN allele and 53 mark-
ers (17.3%) in favor of the wild allele (Fig. 1). It is worth
mentioning that neighboring DArT and SSR markers
showed the same pattern of segregation. The 121 markers

that showed distortion in favor of the wild allele were
distributed among seven chromosomes as follows: 1A (6),
1B (18), 2B (9), 4B (16), 6A (1), 6B (2), and 7B (1). The
markers that showed distortion in favor of the cultivated
allele were distributed as follows: 1A (5), 2A (2), 3B (16),
4A (1), 5B (1), 6B (3), and 7B (1) (Fig. 1). Chromosomes
4B and 1BL showed distortion of all markers in favor of the
wild emmer allele (Fig. 3). Chromosome 1A showed segre-
gation distortion in favor of the wild allele in the long arm
and in favor of the wild allele in the short arm (Fig. 3). Out
of the 14 chromosomes of genome A and B of tetraploid
wheat, only three chromosomes (3A, 5A, and 7A) showed
no segregation distortion (Fig. 1).

Frequency of RILs with parental (non-recombinant) chro-
mosomes

Out of the 2,128 RIL £ chromosome combinations, 148
chromosomes (6.9%) remained non-recombinant (parental)
even after Wve cycles of recombination (Table 2). The
highest frequency of parental chromosomes was observed
in group 4 chromosomes (25 and 26 for 4A and 4B,
respectively). The recovery rate of non-recombinant

Table 1 Chromosome assign-
ment, distribution of markers, 
length of linkage groups, and 
marker density in genetic map 
constructed with the G18-
16 £ LDN recombinant inbreed 
line population

Linkage 
group

SSR DArT Total 
markers

Skeleton 
markers

Added 
markers

Length 
(cM)a

cM/markera

1A 13 27 40 18 22 183.8 10.2

1B 18 34 52 26 26 181.5 7.0

2A 16 28 44 19 25 188.8 9.9

2B 13 59 72 26 46 182.9 7.0

3A 13 22 35 17 18 118.8 7.0

3B 16 65 81 35 46 217.2 6.2

4A 11 40 51 20 31 121.5 6.1

4B 13 22 35 16 19 112.0 7.0

5A 11 13 24 12 12 144.0 12.0

5B 16 37 53 29 24 209.8 7.2

6A 15 23 38 19 19 161.2 8.5

6B 13 53 66 34 32 175.3 5.2

7A 13 25 38 17 21 138.0 8.1

7B 10 30 40 19 21 182.3 9.6

Group 1 31 61 92 44 48 365.3 8.3

Group 2 29 87 116 45 71 371.7 8.3

Group 3 29 87 116 52 64 336 6.5

Group 4 24 62 86 36 50 233.5 6.5

Group 5 27 50 77 41 36 353.8 8.6

Group 6 28 76 104 53 51 336.5 6.3

Group 7 23 55 78 36 42 320.3 8.9

A genome 92 178 270 122 148 1,056.1 8.7

B genome 99 300 399 185 214 1,261 6.8

Total 191 478 669 307 362 2,317.1 7.5

a Chromosome length and 
marker density refer to the 
skeleton map
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chromosomes correlated (R2 = 0.72, P = 0.001; Fig. 4) with
chromosome length (cM) but was unrelated (R2 = 0.43,
P = 0.31) to the number of markers per chromosome. The
probability of recovering non-recombinant chromosomes
was similar for both parental lines LDN (81) and G18-16
(67).

Discussion

The rapid advance in molecular marker and linkage map-
ping technologies exponentially increases the number of
marker loci assigned to genetic maps. Dense genetic maps
are a very useful tool in the identiWcation of molecular

markers closely linked to genes or QTLs of interest, isola-
tion of genes via map based cloning, comparative mapping,
and genome organization studies (Varshney et al. 2007).
The genetic linkage map presented in the current study is
the Wrst published map of durum wheat £ wild emmer
wheat population making use of DArT markers. This
genetic map spans over 2,317 cM, with each chromosome
represented by one linkage group. Wild emmer wheat
accession G18-16 originated from drought-prone habitat in
eastern Israel, while Langdon is a spring durum wheat vari-
ety from North Dakota, USA. The two parental lines were
found polymorphic in various morphophysiological traits,
such as productivity, heading date, plant height, drought
resistance and others (data not shown).

Fig. 1 Genetic linkage map of 
tetraploid wheat constructed 
from RIL population derived 
from a cross between durum 
wheat cultivar Langdon and wild 
emmer wheat acc. G18-16. 
Skeleton markers are shown on 
the left with map distances 
(cM; Kosambi 1944) on the 
right. The added markers 
assigned to chromosome 
intervals are shown on the right 
side of each chromosome. The 
approximate centromere 
position is indicated by 
arrowhead. Short arms are at the 
top. Markers that showed 
distorted segregation in favor of 
wild alleles and cultivated 
alleles were marked on the left 
by G or L, respectively
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Map construction and genome coverage

The constructed map for durum wheat £ wild emmer cov-
ers 2,317.1 cM, corresponding to an average of 7.5 cM per
marker. In general, the current map provides a good cover-
age of the tetraploid wheat genome. However, a few chro-
mosome arms (3AS, 4AS, 5AS, and 5BS) were partly
covered and one arm (4BS) was not covered. Lack of com-
plete genome coverage of homoeologous group 4 was
observed in a few other wheat mapping populations (Röder
et al. 1998; Paillard et al. 2003; ElouaW and Nachit 2004).

Several genetic maps were constructed for tetraploid
wheat, either for T. durum £ T. dicoccoides (Peng et al.

2000; Blanco et al. 1998, 2004; ElouaW and Nachit 2004) or
T. durum £ T. durum (Nachit et al. 2001), revealing map
sizes of 2,237 to 3,598 cM (Table 3). Other maps con-
structed for hexaploid wheat populations reported (for
genomes A and B) map sizes of 1,791.0 to 2,356 cM
(Röder et al. 1998; Quarrie et al. 2005; Akbari et al. 2006).
Therefore, our map is in accord with most published maps
and presents a Wne coverage of genomes A and B of tetra-
ploid wheat.

The relatively large population size used for construc-
tion of the genetic linkage map presented here (152
RILs) as compared with other studies (62–120; Blanco
et al. 1998, 2004; Röder et al. 1998; Nachit et al. 2001;

Fig. 1 continued
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ElouaW and Nachit 2004; Quarrie et al. 2005; Akbari
et al. 2006) is highly advantageous for further exploita-
tion of this map. This large population size will improve
the resolution of QTL mapping of agronomic traits (e.g.,
drought resistance, Peleg et al., in preparation). It also
enables a greater resolution in the positioning of QTLs
on the genetic map, while uniform genome coverage of
markers is required to detect all contributing loci
(Chalmers et al. 2001).

The SSR markers used in the current study, mostly
derived from hexaploid bread wheat (Ganal and Röder
2007), showed high level of transferability to both tetra-
ploid T. turgidum L. subspecies. In contrast, DArT markers
showed a greater level of transferability to the domesticated
durum wheat with 73% of the markers being scored as
“present”, as compared to the wild emmer wheat where
only 27% of the markers scored as “present”. Similar
results were reported for barley mapping population

Fig. 1 continued
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derived from a cross between cultivated barley (Hordeum
vulgare) and wild barely (H. spontaneum), revealing 70%
versus 30% DArT alleles detected as present/absent,
respectively (Hearnden et al. 2007). The low level of wild
alleles detected in the reported cross seems to be due to a
bias in the current DArT array probes that are derived from
cultivated wheat accessions. On the other hand, the allele-
speciWcity of DArT oVers an eYcient path towards discov-
ery of species-speciWc markers (Wenzl et al. 2004).

Clustering of markers

In wheat and many other organisms, recombination is
unevenly distributed with “hot-spots” and “cold-spots”
across chromosomes (Dvolák and Chen 1984; Gill et al.
1996a, b; Faris et al. 2000). Clustering around centromeres
is a well known phenomenon with all types of markers,
resulting from centromeric suppression of recombination
(Tanksley et al. 1992; Korol et al. 1994). Contrary to other
wheat mapping populations (Röder et al. 1998; Peng et al.
2000), in the current study, SSRs showed only a moderate
tendency to cluster around centromeres, presumably due to
the selection of markers based on their known location.
However, a remarkable clustering of DArT markers was
found in telomeric regions (Figs. 1, 2). Akbari et al. (2006)
reported for bread wheat that DArT markers showed a
stronger tendency than SSR markers in particular to map
to gene-rich telomeric regions. A similar pattern was
observed in barley maps using DArT markers (Semagn
et al. 2006). Clusters of PstI-based DArT markers may

reXect the abundance of PstI restriction sites in hypome-
thylated telomeric chromosome regions (Moore 2000).
Similar clustering in telomeric regions was also found in
tetraploid wheat using PstI-based AFLP markers (Peng
et al. 2000).

High-density physical maps in wheat revealed that more
than 85% of wheat genes are present in gene-rich regions,
physically spanning only 5–10% of the genome (Gill et al.
1996a, b; Faris et al. 2000). These regions are strongly
associated with recombination rate in wheat (Gill et al.
1996a, b; Weng and Lazar 2002) and are predominantly
located in telomeres (Qi et al. 2004). For example, the clus-
ters of DArT markers in homoeologous group 1 (Fig. 2a)
are associated with a reported gene-rich region near chro-
mosome telomeric ends (Gill et al. 1996a). The high pro-
portion of clustering of DArT markers may, therefore, be
indicative of gene-rich regions. If this is indeed the case,
DArT markers may be unique for Wne mapping of genes/
QTLs residing in gene-rich regions, thereby facilitating
positional cloning.

Segregation distortion

Segregation distortion is deWned as a deviation of observed
genetic ratios from the expected Mendelian ratios in a given
phenotypic or genotypic class within a segregating popula-
tion. Distorted segregation may be caused by competition
between gametes for preferential fertilization or from abor-
tion of gamete or zygote (Lyttle 1991). Meiotic drive is
another phenomenon aVecting segregation ratios through a

Fig. 1 continued
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variety of molecular and cytogenetic mechanisms resulting
in non-equal representation of homologous alleles (or chro-
mosomal segments) among the functional gametes (Lyttle
1991). In general, normal Mendelian segregation can be
viewed as a product of evolutionary co-adaptation, and of
adjustment of genomic components within a species rather
than an automatic outcome of the eukaryote meiotic
mechanics (Korol et al. 1994). Indirect evidence for this is
provided by the fact that segregation distortions frequently
occur in the progeny of interspeciWc hybrids and are similar
in manifestation to meiotic drive systems.

Numerous examples of segregation distortion have been
reported in many crop species including barley (H. vulgare;

Graner et al. 1991; Devaux et al. 1995), rice (Oryza sativa;
Causse et al. 1994; Xu et al. 1997), and maize (Zea mays;
Wendel et al. 1987; Lu et al. 2002). In wheat, this phenom-
enon has been reported repeatedly (Blanco et al. 2004;
Peng et al. 2000; Quarrie et al. 2005). While segregation
distortion is a common phenomenon in diVerent types of
mapping populations, be it F2, RILs or double haploid
(DH), RIL populations have the highest probability for dis-
tortions due to repeated 5–6 generations of selection forces
(Singh et al. 2007).

The F6 RIL population used in the present study showed
segregation distortion for 91 (29.6%) of the 307 skeleton
loci. In most previous studies, segregation distortion in
favor of the female parent was observed (Singh et al. 2007).
In contrast, our data showed some tendency (58%) in favor
of the wild alleles of the male parent, suggesting high level
of compatibility between the parental lines. The vast major-
ity of loci distorted in favor of the wild allele mapped to
contiguous regions on chromosomes 1A, 1B, 2B, and 4B,
while those distorted in favor of the cultivated allele were
mapped on chromosomes 1A and 3B. Segregation distor-
tion on group 5 chromosomes (5A, 5B, and 5D) of wheat
have been reported previously in several studies (Peng et al.
2000; Faris et al. 2000), including reciprocal populations
derived from a cross between LDN and wild emmer wheat
(Kumar et al. 2007). In the present study, however, no dis-
tortion was noted on chromosomes 5A and 5B (Fig. 1).
Segregation distortion on the short arm chromosome 2B,
observed in the current study, is in agreement with previous
reports (Cadalen et al. 1997; Campbell et al. 1999; Paillard
et al. 2003).

Notably, all markers mapped on chromosome 4B
showed skewed segregation in favor of the wild allele. Dis-
torted segregation in chromosome 1A showed opposite pat-
terns in the two chromosome arms: markers on 1AS were in
favor of the cultivated wheat alleles while markers on 1AL
were in favor of the wild alleles (Fig. 3). Likewise, all
markers on the homoeologous chromosome arm 1BL
showed skewed segregation in favor of the wild alleles.
Blanco et al. (2004) also reported distortion of markers on
chromosome 1B in favor of the wild alleles in durum
wheat £ wild emmer population. The alternative directions
of segregation distortion found in our and in other studies
should not be considered as a surprise if we take into
account the variety of mechanisms that could contribute to
the observed distortions. These may include meiotic drive
and preferential abortion of gametes, eVect of usual game-
tophyte factors, non-random fertilization, and viability
selection at post-syngamic stages. Clearly, these factors
may work simultaneously and in opposite directions, favor-
ing the alleles of the wild or cultivated parent in diVerent
genomic regions. It is also worth recalling that our RIL
mapping population was obtained via several selWng gener-

Fig. 2 Distribution of SSR and DArT loci along chromosomes 1A,
2A, and 6B of the G18-16 £ LDN genetic map
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ations, i.e., the foregoing mechanisms could work in diVer-
ent combinations during these generations.

Non-recombinant chromosomes

The chromosomes of two T. turgidum subspecies, wild
emmer wheat and durum wheat, are assumed to be fully
compatible (congruent). Therefore, in the F6 RIL popula-
tion used in this study, normal recombination rates were

expected for all chromosomes. Nevertheless, a relatively
high frequency (6.9%) of non-recombinant chromosomes
was observed in this population. The highest frequency of
non-recombinant chromosomes was found in group 4
chromosomes (34%), which is close to the theoretical pro-
portion expected for the estimated length of chromosome
4 (» 120 cM). In accordance, Singh et al. (2007) reported
the highest frequency of RILs with non-recombinant chro-
mosome for chromosome 4A in T. boeoticum £ T. mono-
coccum RIL population. Chromosome 4A is known to be
involved in cyclical interchange with chromosome 5A
(Devos et al. 1995) but in our case, only 9% of the non-
recombinant chromosomes were found in chromosome
5A. The parental genotypes of our cross cannot be consid-
ered as highly divergent in evolutionary terms. Still, one
could explain the slightly reduced observed proportion of

Fig. 3 Allele frequencies as a function of the genetic linkage map
along chromosomes 1A, 3B, and 4B. The x-axis indicates the segrega-
tion distortion from the 1:1 ratio observed for each marker, and the

y-axis corresponds to the genetic linkage map. Markers marked with
crossed square indicate the signiWcance threshold of P < 0.05

Table 2 Number of durum wheat (LDN) £ wild emmer wheat (G18-
16) RILs with parental (non-recombinant) chromosomes

Chromosome Number of RILs with non-recombinant 
chromosomes

Wild emmer Durum wheat Total

1A 2 2 4

1B 2 8 10

2A 5 3 8

2B 1 3 4

3A 6 7 13

3B 4 1 5

4A 12 13 25

4B 6 20 26

5A 8 6 14

5B 4 0 4

6A 4 8 12

6B 2 3 5

7A 9 6 15

7B 2 1 3

Total 67 81 148

Fig. 4 Occurrence of parental chromosomes (non-recombinant chro-
mosome) in the mapping data set as associated with chromosome
length (cM)
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recombinant chromosomes compared to the theoretical
expectation as a result of the known general trend of
decrease in recombination in hybrids with genetic dis-
tance between the parental lines.

Concluding remarks

Genetic map with full genome coverage and conWdence in
locus order is necessary for detection, mapping, and estima-
tion of gene eVects on phenotypic traits. The present map,
based on a cross between durum wheat and wild emmer
wheat, most likely covers the majority of the tetraploid
wheat genome. Furthermore, this map is probably the most
intensive published for tetraploid wheat, both in terms of
population size (152 RILs) and in number of markers
mapped (669). This is the Wrst genetic map of a cross
involving wild relatives of wheat using DArT markers and,
therefore, it could serve as new source to identify new
markers (clones) that were not mapped before. This map
provides a valuable resource for wheat genetic research,
including 352 DArT markers whose chromosomal location
was previously unknown, which will expand the pool of
markers available for wheat research. The constructed map

will be used for further QTL detection (e.g., drought
response, grain minerals concentration, and powdery mil-
dew resistance) and as a tool for marker-assisted selection
and map-based breeding for resistance to biotic and abiotic
stresses.
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